Three Monofluorinated Small Molecules: *ortho*-Fluorophenylglycine, Methyl 4-(Fluorocarbonyl)benzoate and 16α -Fluoro- α -estradiol 3-Methyl Ether

JOHN H. BURNS AND EDWARD W. HAGAMAN

Chemistry Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831-6119, USA

(Received 22 April 1992; accepted 15 January 1993)

Abstract

2-Amino-2-(2-fluorophenyl)acetic acid (*ortho*-fluorophenylglycine) consists of a planar acetate anion with a fluorophenyl group attached to the α C atom at a dihedral angle of 105.5°. All three amino H atoms form hydrogen bonds to carboxylate O atoms of three adjacent molecules in the crystal. Methyl 4-(fluorocarbonyl)benzoate has a planar phenylfluorocarbonyl group and its planar carboxylate group is rotated by 6° from it. The estradiol 3-methyl ether, 16α -fluoro-3-methoxyestra-1,3,5(10)-trien-17 α -ol,

has the well known structure for the estradiol moiety. The alcoholic H atom is hydrogen bonded to the adjacent F atom of the molecule. There are no intermolecular hydrogen bonds.

Comment

The structures of these compounds were determined in order to assess the extent of ¹⁹F spin diffusion in solid-state NMR experiments on fluorinated coals (Hagaman & Burns, 1993). This process depends on the strength of the ¹⁹F dipole–dipole interaction, which has an inverse cubic dependence on intermolecular distance (Hagaman, Ho, Brown, Schell & Woody, 1990).

In ortho-fluorophenylglycine the non-H bond lengths are in close agreement with those of glycine (Jönsson & Kvick, 1972) found by neutron diffraction, but the C—H and N—H lengths are shorter, in agreement with the X-ray diffraction study by Marsh (1958). All H atoms of the NH₃ group are involved in hydrogen bonding: H6 to Olⁱ at 2.75 Å, and H7 to O2ⁱⁱ at 2.85 Å and H8 to O2ⁱⁱⁱ at 2.83 Å. (A stereo drawing of the hydrogen-bonding network is deposited.*) This differs from glycine in which one of the hydrogen bonds is bifurcated. The plane of atoms C1, C2, O1, O2 makes a dihedral angle of 105.5° with the fluorophenyl plane.

Fig. 1. The *ortho*-fluorophenylglycine molecule with non-H atoms represented by thermal ellipsoids and H atoms by spheres (each at 20% probability).

Fig. 2. The methyl 4-(fluorocarbonyl)benzoate molecule with non-H atoms represented by thermal ellipsoids and H atoms by spheres (each at 20% probability).

Fig. 3. A molecule of fluoroestradiol methyl ether shown in two perspective views. Non-H atoms are represented by thermal ellipsoids and H atoms by spheres (each at 15% probability). The hydrogen bond is indicated by a dotted line.

^{*} See deposition footnote.

Methyl 4-(fluorocarbonyl)benzoate has a planar phenylfluorocarbonyl moiety, and the planar ester group is rotated about the C1—C7 bond by 6°. This is similar to dimethyl terephthalate (Brisse & Pérez, 1976) in which the twist is 4.7° , and to terephthalic acid (Bailey & Brown, 1967) where the angle is 5.3° . The different carboxylate bond lengths, C7—O1 (1.208 Å) and C7—O2 (1.328 Å), are the same as in dimethyl terephthalate and bis(2-hydroxyethyl) terephthalate (Kashino & Haisa, 1975).

The fluoroestradiol methyl ether has the same basic framework for the estradiol moiety as was found previously for 4-fluoroestradiol (Go & Kartha, 1981), 4-bromoestradiol (Norton, Kartha & Lu, 1964), estradiol hemihydrate (Busetta & Hospital, 1972), estradiol.urea (Duax, 1972) and estradiol.propanol (Busetta, Courseille, Geoffre & Hospital, 1972). Unlike these estradiols, which have hydrogen-bonding networks, the present compound has only one H atom available for hydrogen bonding; it is involved in an intramolecular bond to the adjacent F atom.

Mo $K\alpha$ radiation

Cell parameters from 21

 $0.57 \times 0.47 \times 0.07$ mm

 $\lambda = 0.71069 \text{ Å}$

reflections

 $\theta = 10.4 - 19.6^{\circ}$

T = 297 K

Platelet

Colorless

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 25^{\circ}$

 $k = 0 \rightarrow 5$

 $h = 0 \rightarrow 18$

 $l = -11 \rightarrow 11$

3 standard reflections

frequency: 168 min

intensity variation: -1.7%

 $\mu = 0.116 \text{ mm}^{-1}$

Experimental

o-Flourophenylglycine

Crystal data

 $C_8H_8FNO_2$ $M_r = 169.16$ Monoclinic $P2_1/c$ a = 15.738 (7) Å b = 4.854 (2) Å c = 9.944 (5) Å $\beta = 96.58$ (2)° V = 754.6 Å³ Z = 4 $D_x = 1.488$ Mg m⁻³ $D_m = 1.49$ Mg m⁻³ Density measured by flotation

Data collection

CAD-4 diffractometer ω -2 θ scans, ω -scan width (1.48 + 0.35tan θ)° Absorption correction: empirical T_{min} = 0.625, T_{max} = 0.997 1400 measured reflections 1320 independent reflections 872 observed reflections $[I > \sigma(I)]$

Refinement

 Refinement on F
 $(\Delta/\sigma)_{max} = 0.13$

 Final R = 0.061
 $\Delta\rho_{max} = 0.13$ e Å⁻³

 wR = 0.071
 $\Delta\rho_{min} = -0.13$ e Å⁻³

S = 1.95	Atomi
872 reflections	fron
133 parameters	for 2
Only coordinates of H atoms	phy
refined	2.2A
$w = 4F_o^2 / \{ [\sigma(I)]^2 + (0.05F_o^2)^2 \}$	

Methyl 4-(fluorocarbonyl)benzoate

Crystal data C₉H₇FO₃ $M_r = 182.15$ Monoclinic $P2_{1}/c$ a = 7.394 (4) Å b = 17.363 (4) Å c = 7.288 (3) Å $\beta = 116.51(2)^{\circ}$ Platelet $V = 837.2 \text{ Å}^3$ Z = 4Colorless $D_{\rm x} = 1.445 {\rm Mg} {\rm m}^{-3}$ $D_m = 1.49 \text{ Mg m}^{-3}$ Density measured by flotation

Data collection CAD-4 diffractometer ω -2 θ scans, ω -scan width (0.6 + 0.35tan θ)° Absorption correction: empirical $T_{min} = 0.957$, $T_{max} = 0.99$ 1300 measured reflections 1160 independent reflections 518 observed reflections $[I > \sigma(I)]$

Refinement

Refinement on F Final R = 0.050 wR = 0.050 S = 1.35518 reflections 139 parameters Only coordinates of H atoms refined $w = 4F_o^2/\{[\sigma(I)]^2 + (0.05F_o^2)^2\}$

16 α -Fluoro- α -estradiol 3-methyl ether

Crystal data $C_{19}H_{25}FO_2$ $M_r = 304.41$ Orthorhombic $P2_12_12_1$ a = 6.057 (2) Å b = 8.968 (2) Å c = 29.354 (5) Å V = 1594.5 Å³ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2A)

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 20 reflections $\theta = 7.1-13.2^{\circ}$ $\mu = 0.116 \text{ mm}^{-1}$ T = 297 KPlatelet $0.37 \times 0.22 \times 0.06 \text{ mm}$ Colorless

 $R_{int} = 0.02$ $\theta_{max} = 23^{\circ}$ $h = 0 \rightarrow 8$ $k = 0 \rightarrow 18$ $l = -8 \rightarrow 7$ 3 standard reflections frequency: 168 min intensity variation: -3.5%

 $(\Delta/\sigma)_{max} = 0.04$ $\Delta\rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2A)

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 24 reflections $\theta = 10.8 - 17.6^{\circ}$ $\mu = 0.083$ mm⁻¹ T = 300 K Prism

Z = 4 $D_x = 1.268 \text{ Mg m}^{-3}$ $D_m = 1.31 \text{ Mg m}^{-3}$ Density measured by flota-

0.40×0.31	x	0.22	mm
Colorless			

Table	: 3.	Fra	ctiona	l ator	nic	cod	ordina	ates	and	equivalen
iso	trop	oic th	ermal	parar	nete	ers ((Ų) j	for 1	<u>6α-1</u>	Fluoro-α-
			est	radio	l 3-1	meti	hyl et	her		

 $U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$

tion	
Data collection	
CAD-4 diffractometer $\omega - 2\theta$ scans, ω -scan width $(0.7 + 0.35 \tan \theta)^{\circ}$ Absorption correction: empirical $T_{\min} = 0.97, T_{\max} = 0.99$ 1750 measured reflections 1660 independent reflections 1228 observed reflections $[l > \sigma(l)]$	$R_{int} = 0.034$ $\theta_{max} = 25^{\circ}$ $h = 0 \rightarrow 7$ $k = 0 \rightarrow 10$ $l = 0 \rightarrow 34$ 3 standard reflections frequency: 168 min intensity variation: -1.4%
Refinement	

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.13$
Final $R = 0.033$	$\Lambda q_{\rm max} = 0.13 {\rm e} {\rm \AA}^{-3}$
wR = 0.043	$\Delta p_{\text{max}} = 0.15 \text{ C A}$
S = 1.36	$\Delta \rho_{\rm min} = -0.13 \ {\rm e \ A}^{-3}$
1228 reflections	Atomic scattering factors
275 parameters	from International Tables
Only coordinates of H atoms	for X-ray Crystallogra-
refined	phy (1974, Vol. IV, Table
$w = 4F_o^2 / \{ [\sigma(I)]^2 + (0.05F_o^2)^2 \}$	2.2A)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) for o-flourophenylglycine

$$\begin{array}{c|c} U_{eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i. \mathbf{a}_j. \\ \hline x & y & z & U_{eq} \\ F & 0.7380 \ (2) & -0.3851 \ (7) & 1.0544 \ (3) & 0.078 \ (2) \\ O1 & 0.9349 \ (1) & 0.3119 \ (5) & 1.1776 \ (2) & 0.035 \ (1) \\ O2 & 0.8807 \ (2) & 0.0502 \ (6) & 1.0043 \ (2) & 0.037 \ (1) \\ N & 0.9001 \ (2) & -0.0516 \ (6) & 1.3644 \ (3) & 0.030 \ (2) \\ C1 & 0.8948 \ (2) & 0.1075 \ (7) & 1.1274 \ (3) & 0.026 \ (2) \\ C1' & 0.7606 \ (2) & -0.0370 \ (8) & 1.2163 \ (4) & 0.032 \ (2) \\ C2 & 0.8563 \ (2) & -0.0867 \ (7) & 1.2238 \ (3) & 0.027 \ (2) \\ C2' & 0.7052 \ (3) & -0.185 \ (1) & 1.1284 \ (4) & 0.049 \ (2) \\ C3' & 0.6175 \ (3) & -0.144 \ (1) & 1.1104 \ (5) & 0.070 \ (2) \\ C4' & 0.5846 \ (3) & 0.055 \ (1) & 1.1860 \ (5) & 0.067 \ (2) \\ C5' & 0.6377 \ (3) & 0.208 \ (1) & 1.2765 \ (5) & 0.062 \ (2) \\ C6' & 0.7254 \ (2) & 0.164 \ (1) & 1.2912 \ (4) & 0.044 \ (2) \\ \end{array}$$

Table 2. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) for methyl 4-(fluorocarbonyl)benzoate

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	у	z	U_{eq}
F	0.8531 (4)	0.1368 (2)	0.4852 (4)	0.113 (2)
01	0.6936 (4)	-0.0952 (2)	-0.4104 (4)	0.078 (2)
O2	0.6641 (4)	-0.1682 (2)	-0.1742 (4)	0.076 (2)
03	0.8443 (5)	0.2177 (2)	0.2549 (4)	0.090 (2)
Cl	0.7270 (5)	-0.0369 (2)	-0.0998 (6)	0.047 (3)
C2	0.7391 (5)	0.0373 (3)	-0.1643 (6)	0.056 (3)
C3	0.7750 (5)	0.0981 (3)	-0.0311 (6)	0.057 (3)
C4	0.7953 (5)	0.0851 (2)	0.1655 (5)	0.047 (2)
C5	0.7805 (5)	0.0111 (2)	0.2280 (6)	0.052 (2)
C6	0.7468 (5)	0.0494 (2)	0.0978 (6)	0.052 (2)
C7	0.6937 (6)	-0.1013 (3)	-0.2452 (6)	0.056 (2)
C8	0.6393 (7)	-0.2355 (3)	-0.3027 (7)	0.096 (3)
C9	0.8330 (6)	0.1509 (3)	0.3026 (6)	0.072 (3)

	x	у	z	U_{eq}
F	0.3026 (3)	0.7110(2)	0.70003 (5)	0.077 (1)
01	0.2985 (3)	1.1139 (2)	1.06514 (5)	0.050(1)
02	0.6426 (3)	0.6578 (2)	0.75237 (5)	0.058 (1)
Cl	0.5327 (4)	0.8816 (3)	0.97687 (8)	0.043 (1)
C2	0.4950 (5)	0.9505 (3)	1.01818 (8)	0.046 (1)
C3	0.3213 (5)	1.0501 (3)	1.02279 (8)	0.040 (1)
C4	0.1880 (5)	1.0790 (3)	0.98600 (8)	0.042 (1)
C5	0.2264 (4)	1.0099 (3)	0.94407 (7)	0.039 (1)
C6	0.0743 (5)	1.0504 (3)	0.90496 (8)	0.054 (2)
C7	0.1644 (5)	1.0051 (3)	0.85875 (8)	0.049 (2)
C8	0.2515 (4)	0.8458 (3)	0.86069 (7)	0.038 (1)
C9	0.4521 (4)	0.8412 (3)	0.89226 (7)	0.037 (1)
C10	0.4002 (4)	0.9103 (3)	0.93876 (7)	0.037 (1)
C11	0.5520 (5)	0.6847 (3)	0.89547 (8)	0.044 (1)
C12	0.6041 (5)	0.6170 (3)	0.84869 (8)	0.044 (1)
C13	0.4033 (4)	0.6216 (3)	0.81734 (8)	0.040 (1)
C14	0.3221 (4)	0.7849 (3)	0.81436 (7)	0.036 (1)
C15	0.1616 (4)	0.7844 (3)	0.77408 (8)	0.046 (1)
C16	0.2417 (5)	0.6589 (3)	0.74343 (8)	0.052 (2)
C17	0.4444 (5)	0.5881 (3)	0.76692 (8)	0.047 (1)
C18	0.2242 (5)	0.5128 (3)	0.83374 (9)	0.057 (2)
C19	0.1149 (5)	1.2111 (3)	1.07127 (9)	0.055 (2)

Table 4. Geometric parameters (Å, °)

o-Flourophenylglycin	e		
F—C2'	1.354 (6)	C2'C3'	1.387 (6)
01—C1	1.249 (4)	C3'-C4'	1.361 (8)
O2C1	1.250 (4)	C4'C5'	1.374 (7)
NC2	1.496 (4)	C5'C6'	1.387 (5)
C1-C2	1.520 (5)		
C1'-C2	1.517 (5)	N···O1 ⁱ	2.758 (5)
C1'_C2'	1.367 (5)	N···O2 ⁱⁱ	2.837 (5)
C1'-C6'	1.382 (6)	N····O2 ⁱⁱⁱ	2.826 (5)
01	126 4 (3)	F-C2'-C3'	118.0 (4)
01 - 01 - 02	120.4(3)	C1' - C2' - C3'	124.0 (4)
01 - 01 - 02	116 1 (3)	$C_{1}^{\prime} - C_{2}^{\prime} - C_{4}^{\prime}$	1178(4)
C_{2}^{-} C_{1}^{\prime} C_{2}^{\prime}	120.2(3)	$C_{2}^{\prime} = C_{3}^{\prime} = C_{4}^{\prime}$	120 3 (4)
$C_2 - C_1' - C_6'$	122.9 (3)	$C_{4}^{\prime} - C_{5}^{\prime} - C_{6}^{\prime}$	120.5 (4)
$C_{2}^{\prime} = C_{1}^{\prime} = C_{0}^{\prime}$	1168(2)	C1'C6'C5'	120.0 (3)
$N_{}C^{2}_{}C^{1}_{-$	110.0(2)		120.4 (4)
$N = C^2 = C1'$	112 1 (3)	NH601 ⁱ	165 9 (4)
$C_1 - C_2 - C_1'$	109.6 (3)	N_H702 ⁱⁱ	170.0 (4)
E_{-C2}^{-C1}	1180(3)	N_H802 ⁱⁱⁱ	151 0 (4)
1-02-01	110.0 (5)	N=110***02	151.0 (4)
Methyl 4-(fluorocarbo	onvi)benzoate	5	
F_C9	1 294 (6)	C1C7	1 483 (6)
$1 - c^{7}$	1.208 (6)	C2C3	1 378 (6)
01 = 07	1.208(0)	$C_{2} = C_{3}$	1 301 (6)
03-03	1.328 (5)	C4-C5	1 383 (6)
02 = 07	1.528 (5)	C4-C9	1.565 (6)
02 - 00	1 388 (6)	C5-C6	1 362 (6)
C1C6	1.398 (6)	05 00	
e. ee	1.070 (0)	04 OF 04	120.0 (4)
02-08	116.5 (4)	C4 - C5 - C6	120.2 (4)
C2-C1-C6	119.9 (4)	CI-C6-C5	120.1 (4)
C2-C1-C7	118.3 (4)	01 - C7 - 02	122.5 (4)
C6-C1-C7	121.8 (4)	01	124.9 (4)
C1 - C2 - C3	119.7 (4)	02 - C7 - C1	112.6 (4)
C2-C3-C4	120.0 (4)	F-C9-03	118.7 (4)
C3-C4-C5	120.1 (4)	F-C9-C4	117.1 (4)
C3-C4-C9	118.6 (4)	O3—C9—C4	124.2 (4)
C5-C4-C9	121.3 (4)		
16 a Elucito o cotradi	al 2 mathed	athar	
TOα-Fluoro-α-estraul	1 406 (2)		1 520 (2)
	1.400 (3)		1.349 (3)
	1.3/0(3)	C0-C14	1.527 (3)
01-019	1.424 (4)	C_{2}	1.332 (3)
02-01/	1.419 (3)		1.551 (5)
CI - C2	1.380(3)	UII	1.334 (3)

C1-C10	1.401 (3)	C12-C13	1.526 (4)		
C2-C3	1.387 (4)	C13-C14	1.547 (3)		
C3—C4	1.373 (3)	C13-C17	1.531 (3)		
C4—C5	1.397 (3)	C13C18	1.537 (4)		
C5C6	1.516 (4)	C14—C15	1.531 (3)		
C5-C10	1.389 (4)	C15-C16	1.520 (4)		
C6C7	1.517 (4)	C16C17	1.545 (4)		
C7—C8	1.524 (3)	$O2 \cdot \cdot \cdot F$	2.613 (3)		
C3-01-C19	116.6 (2)	C5-C10-C9	121.0 (2)		
C2-C1-C10	121.7 (2)	C9-C11-C12	112.9 (2)		
C1-C2-C3	120.0 (2)	C11C12C13	111.4 (2)		
01C3C2	115.6 (2)	C12-C13-C14	108.3 (2)		
O1C3C4	124.9 (2)	C12-C13-C17	116.6 (2)		
C2-C3-C4	119.4 (2)	C12-C13-C18	110.9 (2)		
C3-C4-C5	120.7 (2)	C14C13C17	100.5 (2)		
C4C5C6	117.4 (2)	C14—C13—C18	113.2 (2)		
C4-C5-C10	120.7 (2)	C17C13C18	107.0 (2)		
C6C5C10	122.0 (2)	C8-C14-C13	112.2 (2)		
C5-C6-C7	113.2 (2)	C8-C14-C15	120.7 (2)		
C6C7C8	110.0 (2)	C13-C14-C15	104.1 (2)		
C7-C8-C9	108.9 (2)	C14-C15-C16	104.9 (2)		
C7-C8-C14	113.5 (2)	F-C16-C15	112.0 (2)		
C9C8C14	107.9 (2)	FC16C17	109.4 (2)		
C8-C9-C10	111.5 (2)	C15-C16-C17	107.1 (2)		
C8-C9-C11	112.1 (2)	O2-C17-C13	110.0 (2)		
C10C9C11	113.4 (2)	O2-C17-C16	110.9 (2)		
C1-C10-C5	117.6 (2)	C13-C17-C16	102.8 (2)		
C1-C10-C9	121.3 (2)	O2—H25···F	114.2 (3)		
Symmetry code: (i) $2 - x, y - 0.5, 2.5 - z$; (ii) $x, 0.5 - y, 0.5 + z$;					

(iii) x, -0.5 - y, 0.5 + z.

ortho-Fluorophenylglycine (Aldrich Chemical Co.) was recrystallized from H₂O/ethanol. Methyl 4-(fluorocarbonyl)benzoate was synthesized from terephthalic acid monomethyl ether by treatment with SF₄ (Hasek, Smith & Englehardt, 1960) and recrystallized from benzene/hexane. The 16 α -fluoro- α -estradiol 3-methyl ether was prepared from estrone 3-methyl ether (Sigma Chemical Co.) by fluorination of the trimethylsilyl derivative of the enol ether with fluoropyridinium trifluoromethanesulfonate (Umemoto, Tomita & Kawada, 1990), followed by reduction of the α -fluoroketone with NaBH₄ in methanol. Crystals were obtained from hexane. Calculations were performed with the *Enraf–Nonius Structure Determination Package* (Frenz, 1983). The structure was solved by *MULTAN*11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982) and difference Fourier maps.

The authors thank Madge C. Woody for technical assistance, including growing the crystals. This research was sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry, as well as a stero diagram showing the hydrogen-bond network of *o*-fluorophenylglycine, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71016 (35 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1019]

References

Bailey, M. & Brown, C. J. (1967). Acta Cryst. 22, 387-391. Brisse, F. & Pérez, S. (1976). Acta Cryst. B32, 2110-2115.

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved

- Busetta, B., Courseille, C., Geoffre, S. & Hospital, M. (1972). Acta Cryst. B28, 1349–1351.
- Busetta, B. & Hospital, M. (1972). Acta Cryst. B28, 560-567.
- Duax, W. L. (1972). Acta Cryst. B28, 1864-1871.
- Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Go, K. & Kartha, G. (1981). Am. Crystallogr. Assoc. Abstr. Ser. 2, 9, 33.
- Hagaman, E. W. & Burns, J. H. (1993). Fuel. In the press.
- Hagaman, E. W., Ho, P. C., Brown, L. L., Schell, F. M. & Woody, M. C. (1990). J. Am. Chem. Soc. 112, 7445–7450.
- Hasek, W. R., Smith, W. C. & Englehardt, V. A. (1960). J. Am. Chem. Soc. 82, 543-551.
- Jönsson, P.-G. & Kvick, Å. (1972). Acta Cryst. B28, 1827-1833.
- Kashino, S. & Haisa, M. (1975). Acta Cryst. B31, 1819-1822.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Marsh, R. E. (1958). Acta Cryst. 11, 654-663.
- Norton, D. A., Kartha, G. & Lu, C. T. (1964). Acta Cryst. 17, 77-82.
- Umemoto, T., Tomita, K. & Kawada, K. (1990). Org. Synth. 69, 129-143.

Acta Cryst. (1993). C49, 1396-1398

Structure of 4-[(3-Methoxyphenylimino)methyl]phenol

GUAN-YEOW YEAP AND SOON-BENG TEO

School of Chemical Sciences, Universiti Sains Malaysdia, Minden, 11800 Penang, Malaysia

HOONG-KUN FUN AND SIANG-GUAN TEOH*

School of Physics, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia

(Received 5 June 1992; accepted 18 January 1993)

Abstract

3-Methoxy-N-(4-hydroxybenzylidene)aniline exhibits a non-planar conformation with a dihedral angle C7—N—C8—C13 of 45.9° between the planes of the two phenyl rings. The methoxy group is twisted from the phenyl ring by 3.0°.

Comment

The interaction of Schiff bases having a 2-hydroxy substituent on the benzylidene fragment with several metal ions has been described (Bullock, Ladd, Povey & Tajmir-Riahi, 1979; Kamwaya & Khoo, 1985;